Hyperbolic Browsing

Scalable Hierarchy Browsing in Hyperbolic Space

Michael Glatzhofer

Wed 31 Oct 2018 Updates at GitHub

Content


Euclid's Axioms 300 BC


Playfair's Axiom 1795






Nikolai Lobachevsky 1823 (Janos Bolyai 1823 too)


What could this axioms be applyed to?


Spherical

Hyperbolic

Embedding

Projection

Peter MercatorPublic Domain
Glatzhofer MichaelObservable
TrevorgoodchildPublic Domain

Only Parts of ℍ² fit into ℝ³







A Theorem of Hilbert states that it is not possible to place a full hyperbolc plane in ℝ3.

Negative Curved Plane Construction





Frank SottileCC3
Daina TaiminaWeb

Parts of ℍ² in Reality




Frank C. MüllerCC4
Toby HudsonCC3
Glatzhofer MichaelCC4

Parts of ℍ² in ℝ³









1+2: C.T.J. DodsonWeb
3: David DumasWeb
4+5: Ermishin FedorCC3

Curved Space

Spherical
Euclidean
Hyperbolic
Embedding:
Projection:
Model:
𝕊
𝔼
𝔻 or ℍ
Lines:
arcs of great circles
euclidean lines
arcs orthogonal to boundary
Parallel lines:
through P ∊ L there is
no line not meeting L
through any P ∊ L there is
a unique line not meeting L
through P ∊ L there are
infinitely many lines not meeting L
Curvature:
>0
0
<0
Angle sum of triangle:
π
Circumference of circle:
2π sin r
2πr
2π sinh r
Area of circle:
4π sin² r/2
πr²
4π sinh² r/2
Ag2gaehCC4
TomruenPublic Domain
LasunnctyCC4
Loren SerfassWeb
Michael GlatzhoferObservable
Parcly TaxelPublic Domain

Poincaré Disk Model 1873


$$z_h \mapsto z_e \qquad z_h, z_e \in ℂ $$

$$translation:\ P \in ℂ $$

$$rotaion:\ \theta \in ℂ $$

$$transformation:\ z_e = {\frac{\theta z_h + P}{1 + \overline{P} \theta z_h}}$$

$$inverse:\ z_h = {\frac{\overline{\theta} z_e + -\overline{\theta}P}{1 + \overline{-\overline{\theta}P} \overline{\theta} z_e}}$$

$$composition:\ \Big(P_1,\theta_1\Big)\circ\Big(P_2,\theta_2\Big) = \Big(\frac{\theta_2 P_1 + P_2}{\theta_2 P_1 \overline{P_2} + 1}, \frac{\theta_1\theta_2+\theta_1\overline{P_1}P_2}{\theta_2 P_1 \overline{P_2}+1}\Big)$$


$$identity\ transformation:\ \Big(P=0, \theta=1\Big) $$

$$focusing\ point\ \alpha_h:\ \Big(P=-\alpha_h, \theta=1\Big) $$

Poincaré Disk Model Animation

Loren SerfassYoutube

lserf.shinyapps.io

Models

Length
Area
Straightness
Angle
Circle
1871
Beltrami–Klein model
✔️
1873
Poincaré disk model
❌️
✔️
✔️
1873
Poincaré half-plane model
❌️
✔️
✔️
Band model
〰️
❌️
❌️
✔️️️️️️
✔️
TheonCC3
Segerman SchleimerYoutube

Poincaré Disk Model of Schläfli {7,3}, {∞,3} Tiling and Complete Tree





TheonCC3
Anton SherwoodPublic Domain

Early Systems

Hyperbolic Browser: Lamping and Rao 1994

H3: Munzner 1997

Tamara MunznerYouTube
Ramana RaoYouTube

Pipeline




Known Implementations and Applications



ℍ² Layout Space

ℍ³ Layout Space

Walrus

CAIDA / Young HyunWeb

h3py

Songxiao ZhangMIT

Inxight Applications





Keith Andrews

HyperTree

HyperProf

Vladimir BulatovWeb

Roget2000

HVS

Keith Andrews

Ontology4us

Ontology4usWeb

JavaScript InfoVis Toolkit (JIT)

Nicolas Garcia BelmonteWeb

Treebolic

Bernard BouPlay

RougeVis

RougeVisWeb

Hyperbolic Tree of Life 2018

Lettuce of LifeWeb

Thank You For Your Attention