$$z_h \mapsto z_e \qquad z_h, z_e \in ℂ $$
$$translation:\ P \in ℂ $$
$$rotaion:\ \theta \in ℂ $$
$$transformation:\ z_e = {\frac{\theta z_h + P}{1 + \overline{P} \theta z_h}}$$
$$inverse:\ z_h = {\frac{\overline{\theta} z_e + -\overline{\theta}P}{1 + \overline{-\overline{\theta}P} \overline{\theta} z_e}}$$
$$composition:\ \Big(P_1,\theta_1\Big)\circ\Big(P_2,\theta_2\Big) = \Big(\frac{\theta_2 P_1 + P_2}{\theta_2 P_1 \overline{P_2} + 1}, \frac{\theta_1\theta_2+\theta_1\overline{P_1}P_2}{\theta_2 P_1 \overline{P_2}+1}\Big)$$
$$identity\ transformation:\ \Big(P=0, \theta=1\Big) $$
$$focusing\ point\ \alpha_h:\ \Big(P=-\alpha_h, \theta=1\Big) $$